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Spatial Statistics of Stochastic Fiber Networks
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From the known statistics of fiber-fiber contacts in random fiber networks, an
analytic estimate is obtained for the variance of local porosity in random fiber
suspensions and evolving filtrate networks. The variance of local porosity, and
hence the distribution of projected areal density, seem to depend on fiber
geometry only through the cube of mean diameter. Also, the coefficient of
variation of local flow rate perpendicular to the plane of the pad is, to a
first approximation, independent of the mode of flow. Analytic estimates are
obtained also for the effect of fiber clumping on the variance of local porosity
of pads for small inspection zones.

KEY WORDS: 3D fiber networks; porosity; fiber suspensions; clumping;
fiber geometry; network geometry.

1. INTRODUCTION

It is known that the pore size distributions of stochastic fiber networks like
paper and nonwoven fabrics are skew and are often of lognormal or
gamma shape.(1, 2) Approximate analytic results exist for the cases of
random and non-random lines in a plane, where the distributions are
represented by structures of rectangles with side lengths drawn from
negative-exponential distributions(1) or gamma distributions.(2, 3) These
approximations are meaningful because in a planar random array of
infinite lines the expected number of sides per polygon is four and the dis-
tribution of inter-crossing distances is negative-exponential;(4) the gamma
distribution seems to provide the appropriate generalization to non-ran-
dom situations.(2, 3, 5) Moreover, such approximations give agreement with
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classification schemes based on hydrodynamic measurements of the pore
size distribution in real stochastic fiber networks such as paper, (1, 2) which
are almost planar.

A widely used structural characteristic of planar networks is the
distribution of local averages of areal density. From the Central Limit
Theorem we expect this to follow a normal distribution with standard
deviation decreasing with increasing inspection zone size. This is confirmed
by analysis of digitized radiographic images of the areal density distribu-
tion in paper and non-woven textiles. The areal density distribution con-
trols also the small-strain behaviour in stochastic bonded fiber networks of
elastic fibers.(6)

2. MODELLING

By a fiber we shall mean a rigid rod of length * and diameter |. By
a stochastic fiber network we shall mean the result of some stochastic
process of placing a fixed number of fibers in a bounded rectangular region.
A special case is the random network when the fiber centroids follow a
Poisson process with uniformly distributed angles for their axes. Moreover,
our applications of interest concern the case when the fibers in the network
lie close to horizontal planes. This occurs in materials like paper, non-
woven textiles and glass fiber mats.

Consider a partition of a stochastic fiber network into congruent
regions by a planar square grid of side length x. We shall denote the local
averages in zones by placing a tilde t over the random variables; thus ;�
is the local areal density, c~ is the local density and =~ is the local porosity.
These variables are related through the density, \ of a fiber and the thick-
ness, z~ of the network.

c~ =(1&=~ ) \ and ;� =c~ z~ (1)

We wish to estimate the variance of local porosity, Varx(=~ ), through the
measurable variance of local areal density, Varx(;� ).

There are analytic expressions for Varx(;� ) in the case of random
networks of arbitrary rectangular fibers(7) or disks.(8) In particular, for a
random structure of mean areal density ;� , made from objects of mean areal
density G, the point variance (x=0) is given by the Poisson result

Var0(;� )=;� G (2)

For our fibers of mean width | and mass per unit length $, we have
G=$�|; this will be the main case that we consider in the sequel.
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2.1. 3D Random Fiber Networks

Denote by A=*�| the fiber aspect ratio. From ref. 10 the expected
number of fiber contacts per fiber in a random 3-dimensional network is
given as

n� =2Acvol (3)

where cvol is the solid volume fraction in the fiber network. Equation (3)
is derived by considering the expected number of fibers in a cube of side,
* and the probability of their intersection with a cylinder of diameter,
| and height, * for all orientations of fibers in three dimensions. In our
local zone with network thickness z~ the local average number of contacts
per fiber is

n~ =
2Ac~

\
=

2A;�
z~ \

=2A(1&=~ ) (4)

and the global averages are related by

n� =2A(1&=� ) (5)

It follows from (4) that the required variance of local porosity is

Varx(=~ )=
Varx(n~ )

4A2 (6)

We can estimate Varx(n~ ) by observing that it is an average value from the
fibers present in the zone. Obviously this number of contributing fibres,
N� say, will vary from zone to zone but its expected value, N is the ratio of
the expected mass of fibers to the mass of one fibre: N=;� x2�$*. Now,
the variance of averages of samples of size N is 1�N times the variance of
samples of size 1, for processes that conform to the Central Limit Theorem.
So we have

Varx(n~ )=
1
N

Var0(n~ )=
1
N

n� (7)

since the underlying process of fiber contacts is supposed to be Poisson.
This allows substitution in (6), bearing in mind that we want more than
one fiber in the zones

Varx(=~ )=
n� $*

4A2;� x2
for x>- $ *�;� (8)
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Using (5), we have, for x>- $*�;� , the following equivalent expres-
sions:

Varx(=~ )=
(1&=� ) $*

2A;� x2
(9)

=
$*

2A\z� x2 (10)

=
?|3

8z� x2 (11)

Equations (10�11) provide an estimate of the variance of local
network porosity measured over square zones of side length x when the
mean areal density is ;� at a depth of z� , in the case of a random network.
The important qualitative observation is that it depends on the constituent
fibers only through the cube of their diameter.

A projection of the 3D structure onto a plane allows 2D characterisa-
tion of the structure. For a network of uniform height z� the variance of
local areal density, Varx(;� ) given by:

Varx(;� )=\2 z� 2 Varx(=~ ) (12)

When the network height varies between zones we have:

Varx(;� )=\2 Varx(=~ z~ ) (13)

and if =~ and z~ are bivariate normally distributed and independent:

Varx(;� )=\2(z� 2 Varx(=~ )+=� 2 Varx(z~ )+Varx(=~ ) Varx(z~ )) (14)

2.2. Fluid Flow Rates in 3D Random Fiber Networks

We can estimate also Var(q~ ), the variance of local flow rate per unit
area through the network. The flow rate depends on the flow mode, and
through square zones of side length x, we have the estimate

q~ B
r� k

x2 n~ for r� <<x (15)

where r� is the mean pore radius and k=4, 3, 2, 1
2 , depending on whether

the flow is laminar, molecular, turbulent or capillary, respectively. The
coefficients of r� k are dependent on fluid properties, such as viscosity and
surface tension, additional geometric parameters such as capillary length
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and the driving force; full expressions are given in ref. 9 along with a dis-
cussion of the appropriate use of each. It follows immediately from (15)
that the mean flow rate through such zones, q� , is proportional to r� k+,
where + is the mean number of pores per unit area, and the variance of the
mean flow rate through such zones is

Var(q~ )=
q� 2

+x2 (16)

Hence the coefficient of variation is expected to a first approximation to be
independent of flow mode:

CV(q~ )=
1

- + x
(17)

This equation has the potential to provide estimates of mean numbers
of pores per unit area for fiber networks, by collecting flows in a square
grid of receivers. The coefficient of variation of local flow rate through
fiber networks has relevance to, for example, the performance of filters
in industrial and technical applications, the absorption of inks into paper
in printing processes, and the application of mineral slurries to paper in
coating processes. We note that a strong relationship has been found
between the parameters of the pore radius distribution in paper and the
coefficient of variation of local areal density.(2)

2.3. Clumped Networks

Real stochastic fiber networks, such as commercially manufactured
papers, nonwoven textiles and glass mats, depart from ideal randomness
because fibers are not deposited independently nor with equal likelihood in
all positions. The aggregation or ``clumping'' of fibres, caused by interac-
tion in suspension, manifests itself in increased variability of local porosity
and areal density. We seek an estimate for the variance of local porosity,
denoted Varx*(=~ ) for such networks, in terms of measurable clumping
parameters. Widely used measurements of nonuniformity in planar fiber
networks are the variance and coefficient of variation of local areal density,
and the ratio of the variance of local areal density to that calculated for a
random network of fibers with the same distribution of length, width and
linear density at the same mean areal density. More recently, (8) the clump-
ing has been characterised by a technique of stochastic decomposition of
radiographs of commercial papers into discs with a lognormal distribution
of diameters and uniform mean areal density. Simulated structures
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generated by deposition of such disks according to a Poisson process in
two dimensions yields structures with a decay of variance with increasing
zone size close to that seen in commercial papers.(11) For such a structure
made from disks of mean diameter D and mean areal density G, the
variance of local areal density measured using square zones of side length
x is approximated by

Varx*(;� )r;� G \1&
2 x
?D

+ } } }+ for x�D (18)

where ;� is the mean areal density.(10) We use the superfix * to denote the
case of clumped networks.

To obtain an estimate of Varx*(=~ ), we need to make some assumptions
about the way that fibers are packed. Accordingly, we look at three special
cases, the first being trivial.

Uniform Density Network. Here we have, in Eq. (1), c~ =c� , so
also =~ ==� . Then local averages of porosity are constant and Varx*(=~ )=0.

Uniform Thickness Network. Here we have, in Eq. (1), z~ =z� , so
c~ =;� �z� =(1&=~ ) \. Hence

Varx*(=~ )=Varx*(;� �z� \) (19)

Then it follows that

Varx*(=~ )=
;� G

z� 2\2 \1&
2x
?D

+ } } }+ for x�D (20)

Variable Thickness Network. Rearranging Eq. (13) for the case
of a clumped network gives

Varx*(=~ )=
1
\2 Varx* \;�

z~ + (21)

If ;� and z~ are bivariate normally distributed we have the following

Varx*(=~ )=
1
\2 \;�

z� +
2

\Varx*(;� )

;� 2
&

2 Cov(;� , z~ )

;� z�
+

Varx*(z~ )
z� 2 + (22)

where

Cov(;� , z~ )=;� z~ &;� z� (23)

=(1&=~ ) \z~ 2&(1&=� ) \z� 2 (24)
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and Cov(;� , z~ ) and is the covariance of ;� and z~ . For dense networks in
suspension, and for clumped fiber networks resulting from the filtration of
a suspension, we have the expectation that z~ is to some extent dependent
on ;� and vice versa.

If =~ r=� :

Cov(;� , z~ )r(1&=� ) \(z~ 2&z� 2) (25)

r(1&=� ) \ Varx*(z~ ) (26)

r
;�
z�

Varx*(z~ ) (27)

Substition of (27) in (22) yields:

Varx*(=~ )r\ ;�
\z� +

2

\Varx*(;� )

;� 2
&

Varx*(z~ )
z� 2 + (28)

r\ ;�
\z� +

2

(CV x*(;� )2&CV x*(z~ )2) (29)

and when CVx*(z~ )=0 Eq. (29) reduces to Eq. (19). More precise expres-
sions for those enclosed in brackets in Eqs. (18) and (20), valid for all x and
lognormal distributions of disk diameters, can be found in the Appendix to
ref. 8.

3. APPLICATION

The commercial manufacture of paper, nonwoven fabrics and fibrous
filter and barrier media like glass mats involves the continuous filtration of
a 3D fiber suspension into an essentially 2D structure. Typically papers are
10�20 fibers deep, in a thickness of 0.1 mm, made from an aqueous suspen-
sion of height 10 mm. Here we see two applications of the theory; first, to
quantify the potential of a suspension to yield a uniform structure on filtra-
tion; and second, to estimate the variance of local density in an almost 2D
network, given measures of the local areal density and thickness distribu-
tions.

3.1. Suspension Filtration

Equation (14) may be applied to the delivery of a well mixed fiber
suspension jet at high speed from the flowspreader of a papermachine to
the continuous filtration stage. Typically the fiber volume fraction in such
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a delivery system is less than 20 and hence, =� >0.98; we have the
approximation therefore, as =� � 1:

Varx(;� )r\2(z� 2 Varx(=~ )+(1+Varx(=~ )) Varx(z~ )) (30)

r\2z� 2(Varx(=~ )+(1+Varx(=~ )) CVx(z~ )2) (31)

where CVx(z~ ) is the coefficient of variation of local suspension height and
Eqs. (14, 30, 31) recover Eq. (12) when Varx(z~ )=0.

From fiber geometry we can calculate Var(=~ ) for a given z� and thus
the potential of the delivered suspension to yield a uniform structure on
filtration can be estimated for given Varx(z~ ) or CVx(z~ ). Experimentally,
Varx(z~ ) and CVx(z~ ) may be determined using video image acquisition and
analysis as, for example, by Kiviranta and Paulapuro.(12)

We observe from Eq. (11) however, that for typical papermachine initial
suspension heights and fiber diameters, say z� =10 mm and |=30 +m then

Varx(=~ )r
10&6

x2 (x in mm) (32)

and as =� r1 then

CVx(=~ )r
10&3

x
(x in mm) (33)

Substituting (32) in (31) and assuming the fiber density is that of cellulose,
i.e., \=1.55 g cm&3 allows calculation of Varx(;� ) for a range of CVx(z~ )
and x. A plot of the standard deviation of ;� is given in Fig. 1 for 0�
CVx(z~ )�50 and 30 +m�x�1 mm.

In a continuous filtration process, such as papermaking or the
manufacture of nonwoven textiles, a fiber suspension is delivered as a jet
from a flowspreader to a filtration stage. The theory quantifies the impor-
tance of the uniformity of the jet in determining the state of the suspension
delivered. For the case given above, the suspension required to form a
60 g m&2 network has, at the 1 mm scale, a coefficient of variation of local
areal density, CV1(;� )=25.70 when CV1(z~ )=0, increasing to 2500 when
CV1(z~ )=10. This treatment assumes that the most uniform state
achievable by the input of turbulence to the suspension is random and that
the probability of fibers being located in surface perturbations is the same
as that in the bulk of the fluid.

As filtration of a suspension proceeds, fibers are drawn preferentially
towards sparse regions in the evolving structure due to their lower
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Fig. 1. Relationship between standard deviation of ;� proj , CVx(z~ ) and zone size, x. Surface
plotted is that for fiber diameter, |=30 +m; mean suspension height, z� =10 mm.

resistance to flow. Our model provides an interpretation of this ``preferen-
tial drainage'' effect which has been simulated by Gorres et al.(13) and
demonstrated experimentally by Sampson et al.(14) for laboratory formed
networks and by Norman et al.(15) for machine made papers. A typical
machine made paper will have CV1(;� ) between 50 and 100, illustrating
substantial preferential drainage in the forming section of a paper machine
even when the height of the suspension is uniform. The theory has potential
for on-line monitoring of the efficiency of the filtration stage through
on-line estimates of CVx(z~ ) and variance of local areal density, which can
be acquired by high speed video imaging.

3.2. Variance of Local Density in Paper

Strong correlations between ;� and z~ for paper made from three types
of pulp are reported by Schultz-Eklund et al.(16) who calculated also the
coefficient of variation of local density, CV(c~ ). Table 1 shows the results of
applying their data, for papers made from three pulp types, to Eq. (29).
The mean porosity was estimated using the expression, =� =1&c� �\. For
the paper made from Chemi-Thermo-Mechanical Pulp (CTMP), CV(;� )<
CV(z~ ) and therefore the bracketed term in Eq. (29) is negative and Var(=~ )
cannot be estimated without knowledge of Cov(;� , z~ ). For the Thermo-
Mechanical Pulp (TMP) and the ``unbleached Kraft'' papers, the model
slightly underestimates CV(c~ ), though agreement would probably be
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Table 1. Variance of Local Density and Porosity in Machine-Made Papersa

Data from ref. 16 Data from model

Paper type ;� CV(;� ) z� CV(z~ ) c� CV(c~ ) =� CV(=~ ) CV(c~ )
g m&2 0 +m 0 kg m&3 0 [ ] [ ] [ ]

CTMP 57.9 13.4 171 13.5 338 9.0 0.78 �� ��
TMP 39.7 12.2 51 7.4 778 12.3 0.50 9.8 9.7
Unbleached Kraft 56.8 12.6 92 11.4 617 7.9 0.60 3.6 5.4

a Data from ref. 16. Values of CV(=~ ) calculated from Eq. (29).

improved given data to calculate Cov(;� , z~ ) and a better estimate of \ for
each fiber type.

4. CONCLUSIONS

The theory presented here suggests that the variance of porosity in
three dimensional random fiber networks is dependent on fiber morphology
only through the cube of fiber diameter. A projection of the network in two
dimensions indicates that the variance of local areal density is controlled by
the square of the coefficient of variation of local network height. In a prac-
tical application, this demonstrates the importance of the uniformity of
suspension height when delivering a fiber suspension to a papermachine, in
optimising the distribution of fiber in the suspension. An approximate
expression has been obtained also for the coefficient of variation of local
flow rate perpendicular to the plane of a fiber network which, for suf-
ficiently large zones is independent of the mode of flow. For clumped
networks, the variance of local porosity can be expressed in terms of the
mean areal density and thickness and their coefficients of variation.

NOMENCLATURE

A Mean fiber aspect ratio [ ]
;� Local areal density g m&2

;� Mean areal density g m&2

c~ Local mass density g m&3

cvol Solid volume fraction [ ]
D Mean disk diameter m
$ Fibre linear density g m&1

=~ Local porosity [ ]
=� Mean porosity [ ]
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G Mean disk areal density g m&2

k Exponent determining flow regime [ ]
* Fibre length m
+ Mean number of pores per unit area [ ]
n~ Local average number of contacts per fibre [ ]
n� Global average number of contacts per fibre [ ]
N Mean number of fibers in a zone of side x [ ]
q~ Local volumetric flow rate m3 s&1

q� Mean volumetric flow rate m3 s&1

r� Mean pore radius m
\ Fibre density g m&3

| Fibre width m
x Zone size m
z~ Local network thickness m
z� Mean network thickness m
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